270 research outputs found

    Un sistema multiprocessore per la simulazione della chirurgia sull'osso temporale

    Get PDF
    Nel presente articolo si presenta un simulatore per l’addestramento alla chirurgia dell’osso temporale. Il sistema si basa su modelli volumetrici direttamente derivati da dati 3D di TAC e MR. Il ritorno di sensazioni in tempo reale viene fornito all’utente per mezzo di tecniche di rendering volumetrico e di modellazione di sensazioni aptiche. I vincoli nelle prestazioni imposti dal sistema percettivo umano sono soddisfatti sfruttando il parallelismo attraverso il disaccoppiamento della simulazione su una piattaforma di PC multi-processore. In quest’articolo, vengono descritti in dettaglio i componenti del sistema e lo stato attuale dell’integrazione dei medesimi

    HAPTIC AND VISUAL SIMULATION OF BONE DISSECTION

    Get PDF
    Marco AgusIn bone dissection virtual simulation, force restitution represents the key to realistically mimicking a patient– specific operating environment. The force is rendered using haptic devices controlled by parametrized mathematical models that represent the bone–burr contact. This dissertation presents and discusses a haptic simulation of a bone cutting burr, that it is being developed as a component of a training system for temporal bone surgery. A physically based model was used to describe the burr– bone interaction, including haptic forces evaluation, bone erosion process and resulting debris. The model was experimentally validated and calibrated by employing a custom experimental set–up consisting of a force–controlled robot arm holding a high–speed rotating tool and a contact force measuring apparatus. Psychophysical testing was also carried out to assess individual reaction to the haptic environment. The results suggest that the simulator is capable of rendering the basic material differences required for bone burring tasks. The current implementation, directly operating on a voxel discretization of patientspecific 3D CT and MR imaging data, is efficient enough to provide real–time haptic and visual feedback on a low–end multi–processing PC platform.

    Evaluation of CNN-based Single-Image Depth Estimation Methods

    Get PDF
    While an increasing interest in deep models for single-image depth estimation methods can be observed, established schemes for their evaluation are still limited. We propose a set of novel quality criteria, allowing for a more detailed analysis by focusing on specific characteristics of depth maps. In particular, we address the preservation of edges and planar regions, depth consistency, and absolute distance accuracy. In order to employ these metrics to evaluate and compare state-of-the-art single-image depth estimation approaches, we provide a new high-quality RGB-D dataset. We used a DSLR camera together with a laser scanner to acquire high-resolution images and highly accurate depth maps. Experimental results show the validity of our proposed evaluation protocol

    Practical line rasterization for multi-resolution textures

    Get PDF
    Draping 2D vectorial information over a 3D terrain elevation model is usually performed by real-time rendering to texture. In the case of linear feature representation, there are several specific problems using the texturing approach, specially when using multi-resolution textures. These problems are related to visual quality, aliasing artifacts and rendering performance. In this paper, we address the problems of 2D line rasterization on a multi-resolution texturing engine from a pragmatical point of view; some alternative solutions are presented, compared and evaluated. For each solution we have analyzed the visual quality, the impact on the rendering performance and the memory consumption. The study performed in this work is based on an OpenGL implementation of a clipmap-based multi-resolution texturing system, and is oriented towards the use of inexpensive consumer graphics hardware. 1

    Mastoidectomy simulation with combined visual and haptic feedback

    Get PDF
    Mastoidectomy is one of the most common surgical procedures relating to the petrous bone. In this paper we describe our preliminary results in the realization of a virtual reality mastoidectomy simulator. Our system is designed to work on patient-specific volumetric object models directly derived from 3D CT and MRI images. The paper summarizes the detailed task analysis performed in order to define the system requirements, introduces the architecture of the prototype simulator, and discusses the initial feedback received from selected end users.17-2

    Far from Naples. The Stinche’s role in the manuscript tradition of the “Caccia di Diana”

    Get PDF
    This essay focuses on the role of two manuscript witnesses written at the Florentine municipal prison, called the Stinche, in the context of the manuscript tradition of the Caccia di Diana (Diana’s Hunt)

    List of Guest Editors

    Get PDF

    Degradation rate of 5-fluorouracil in metastatic colorectal cancer. A new predictive outcome biomarker?

    Get PDF
    BACKGROUND: 5-FU based chemotherapy is the most common first line regimen used for metastatic colorectal cancer (mCRC). Identification of predictive markers of response to chemotherapy is a challenging approach for drug selection. The present study analyzes the predictive role of 5-FU degradation rate (5-FUDR) and genetic polymorphisms (MTHFR, TSER, DPYD) on survival. MATERIALS AND METHODS: Genetic polymorphisms of MTHFR, TSER and DPYD, and the 5-FUDR of homogenous patients with mCRC were retrospectively studied. Genetic markers and the 5-FUDR were correlated with clinical outcome. RESULTS: 133 patients affected by mCRC, treated with fluoropyrimidine-based chemotherapy from 2009 to 2014, were evaluated. Patients were classified into three metabolic classes, according to normal distribution of 5-FUDR in more than 1000 patients, as previously published: poor-metabolizer (PM) with 5-FU-DR ≤ 0,85 ng/ml/106 cells/min (8 pts); normal metabolizer with 0,85 < 5-FU-DR < 2,2 ng/ml/106 cells/min (119 pts); ultra-rapid metabolizer (UM) with 5-FU-DR ≥ 2,2 ng/ml/106 cells/min (6 pts). PM and UM groups showed a longer PFS respect to normal metabolizer group (14.5 and 11 months respectively vs 8 months; p = 0.029). A higher G3-4 toxicity rate was observed in PM and UM, respect to normal metabolizer (50% in both PM and UM vs 18%; p = 0.019). No significant associations between genes polymorphisms and outcomes or toxicities were observed. CONCLUSION: 5-FUDR seems to be significantly involved in predicting survival of patients who underwent 5-FU based CHT for mCRC. Although our findings require confirmation in large prospective studies, they reinforce the concept that individual genetic variation may allow personalized selection of chemotherapy to optimize clinical outcomes

    Haptic and visual simulation of bone dissection

    Get PDF
    Tesi di dottorato: UniversitĂ  degli Studi di Cagliari, FacoltĂ  di Ingegneria, Dipartiemnto di Ingegneria Meccanica, XV Ciclo di Dottorato in Progettazione Meccanica.In bone dissection virtual simulation, force restitution represents the key to realistically mimicking a patient--specific operating environment. The force is rendered using haptic devices controlled by parametrized mathematical models that represent the bone--burr contact. This dissertation presents and discusses a haptic simulation of a bone cutting burr, that it is being developed as a component of a training system for temporal bone surgery. A physically based model was used to describe the burr--bone interaction, including haptic forces evaluation, bone erosion process and resulting debris. The model was experimentally validated and calibrated by employing a custom experimental set--up consisting of a force--controlled robot arm holding a high--speed rotating tool and a contact force measuring apparatus. Psychophysical testing was also carried out to assess individual reaction to the haptic environment. The results suggest that the simulator is capable of rendering the basic material differences required for bone burring tasks. The current implementation, directly operating on a voxel discretization of patient-specific 3D CT and MR imaging data, is efficient enough to provide real--time haptic and visual feedback on a low--end multi--processing PC platformInedit

    Contact Point

    Get PDF
    https://scholarlycommons.pacific.edu/contact-point/1006/thumbnail.jp
    • …
    corecore